DC FieldValueLanguage
dc.contributor.authorDragovich, B.en
dc.contributor.authorMisic, N. Z.en
dc.date.accessioned2020-12-11T13:04:45Z-
dc.date.available2020-12-11T13:04:45Z-
dc.date.issued2014-10-01en
dc.identifier.issn20700466en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4450-
dc.description.abstract© 2014, Pleiades Publishing, Ltd. We consider summation of some finite and infinite functional p-adic series with factorials. In particular, we are interested in the infinite series which are convergent for all primes p, and have the same integer value for an integer argument. In this paper, we present rather large class of such p-adic functional series with integer coefficients which contain factorials. By recurrence relations, we constructed sequence of polynomials Ak(n; x) which are a generator for a few other sequences also relevant to some problems in number theory and combinatorics.en
dc.relation.ispartofP-Adic Numbers, Ultrametric Analysis, and Applicationsen
dc.subjectadelic summation | Bell numbers | Bernoulli numbers | irrational numbers | p-adic numbers | p-adic series | recurrence relationsen
dc.titlep-Adic invariant summation of some p-adic functional seriesen
dc.typeArticleen
dc.identifier.doi10.1134/S2070046614040025en
dc.identifier.scopus2-s2.0-84946187660en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84946187660en
dc.relation.firstpage275en
dc.relation.lastpage283en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issue4en
dc.relation.volume6en
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 24, 2024

Page view(s)

16
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.