DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dragovich, B. | en |
dc.contributor.author | Misic, N. Z. | en |
dc.date.accessioned | 2020-12-11T13:04:45Z | - |
dc.date.available | 2020-12-11T13:04:45Z | - |
dc.date.issued | 2014-10-01 | en |
dc.identifier.issn | 20700466 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/4450 | - |
dc.description.abstract | © 2014, Pleiades Publishing, Ltd. We consider summation of some finite and infinite functional p-adic series with factorials. In particular, we are interested in the infinite series which are convergent for all primes p, and have the same integer value for an integer argument. In this paper, we present rather large class of such p-adic functional series with integer coefficients which contain factorials. By recurrence relations, we constructed sequence of polynomials Ak(n; x) which are a generator for a few other sequences also relevant to some problems in number theory and combinatorics. | en |
dc.relation.ispartof | P-Adic Numbers, Ultrametric Analysis, and Applications | en |
dc.subject | adelic summation | Bell numbers | Bernoulli numbers | irrational numbers | p-adic numbers | p-adic series | recurrence relations | en |
dc.title | p-Adic invariant summation of some p-adic functional series | en |
dc.type | Article | en |
dc.identifier.doi | 10.1134/S2070046614040025 | en |
dc.identifier.scopus | 2-s2.0-84946187660 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84946187660 | en |
dc.relation.firstpage | 275 | en |
dc.relation.lastpage | 283 | en |
dc.contributor.orcid | #NODATA# | en |
dc.contributor.orcid | #NODATA# | en |
dc.relation.issue | 4 | en |
dc.relation.volume | 6 | en |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
SCOPUSTM
Citations
4
checked on Nov 24, 2024
Page view(s)
16
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.