DC FieldValueLanguage
dc.contributor.authorDragović, Brankoen
dc.contributor.authorKhrennikov, Andrei Yuen
dc.contributor.authorMišicć, Natasăen
dc.date.accessioned2020-12-11T13:04:45Z-
dc.date.available2020-12-11T13:04:45Z-
dc.date.issued2017-01-01en
dc.identifier.issn03545180en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4447-
dc.description.abstract© 2017, University of Nis. All rights reserved. Summation of a large class of the functional series, which terms contain factorials, is considered. We first investigated finite partial sums for integer arguments. These sums have the same values in real and all p-adic cases. The corresponding infinite functional series are divergent in the real case, but they are convergent and have p-adic invariant sums in p-adic cases. We found polynomials which generate all significant ingredients of these series and make connection between their real and p-adic properties. In particular, we found connection of one of our integer sequences with the Bell numbers.en
dc.relation.ispartofFilomaten
dc.subjectBell numbers | Integer sequences | P-adic invariant summation | P-adic seriesen
dc.titleSummation of p-adic functional series in integer pointsen
dc.typeArticleen
dc.identifier.doi10.2298/FIL1705339Den
dc.identifier.scopus2-s2.0-85014624181en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85014624181en
dc.relation.firstpage1339en
dc.relation.lastpage1347en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issue5en
dc.relation.volume31en
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 24, 2024

Page view(s)

12
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.