DC FieldValueLanguage
dc.contributor.authorDimitrijević, Ivanen
dc.contributor.authorDragović, Brankoen
dc.contributor.authorKoshelev, Alexeyen
dc.contributor.authorRakić, Zoranen
dc.contributor.authorStanković, Jelenaen
dc.date.accessioned2020-12-11T13:04:43Z-
dc.date.available2020-12-11T13:04:43Z-
dc.date.issued2020-06-01en
dc.identifier.issn2073-8994-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4432-
dc.description.abstractIn this paper, we investigate a nonlocal modification of general relativity (GR) with action is an analytic function of the d'Alembertian □. We found a few exact cosmological solutions of the corresponding equations of motion. There are two solutions which are valid only if Λ ≠ 0, k = 0, and they have no analogs in Einstein's gravity with cosmological constant Λ. One of these two solutions is, that mimics properties similar to an interference between the radiation and the dark energy. Another solution is a nonsingular bounce one. For these two solutions, some cosmological aspects are discussed. We also found explicit form of the nonlocal operator F(□), which satisfies obtained necessary conditions.en
dc.publisherMDPI-
dc.relation.ispartofSymmetryen
dc.subjectCosmological solutions | Dark energy | Nonlocal gravity | Radiationen
dc.titleSome cosmological solutions of a new nonlocal gravity modelen
dc.typeArticleen
dc.identifier.doi10.3390/SYM12060917en
dc.identifier.scopus2-s2.0-85087464028en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage917-
dc.relation.issue6en
dc.relation.volume12en
dc.description.rankM22-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-5818-0150-
Show simple item record

SCOPUSTM   
Citations

10
checked on Jun 14, 2024

Page view(s)

46
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.