DC FieldValueLanguage
dc.contributor.authorTodorović, Branimiren
dc.contributor.authorStanković, Miomiren
dc.contributor.authorTodorović-Zarkula, Slavicaen
dc.date.accessioned2020-12-11T13:04:42Z-
dc.date.available2020-12-11T13:04:42Z-
dc.date.issued2000-01-01en
dc.identifier.isbn0-7803-5800-7en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4425-
dc.description.abstractA sequentially adaptive radial basis function (RBF) network is applied to the nonstationary, time series prediction. Sequential adaptation of parameters and structure is achieved using an extended Kalman filter criterion for network growing is obtained from the Kalman filter's consistency test. The Optimal Brain Surgeon and Optimal Brain Damage pruning methods are derived for networks which parameters are estimated by the EKF. Criteria for neurons/connections pruning are based on the statistical parameter significance test. Prediction of the nonstationary logistic map and Lorenz time series is considered.en
dc.publisherIEEE-
dc.relation.ispartofIEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, AS-SPCC 2000en
dc.titleStructurally adaptive RBF network in nonstationary time series predictionen
dc.typeConference Paperen
dc.identifier.doi10.1109/ASSPCC.2000.882475en
dc.identifier.scopus2-s2.0-84962436306en
dc.relation.firstpage224en
dc.relation.lastpage229en
dc.description.rankM33-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Show simple item record

SCOPUSTM   
Citations

10
checked on Nov 24, 2024

Page view(s)

10
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.