DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stanković, Miomir | en |
dc.contributor.author | Vidanović, Mirjana | en |
dc.contributor.author | Tričković, Slobodan | en |
dc.date.accessioned | 2020-12-11T13:04:40Z | - |
dc.date.available | 2020-12-11T13:04:40Z | - |
dc.date.issued | 2001-01-01 | en |
dc.identifier.issn | 1522-6514 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/4416 | - |
dc.description.abstract | The series (3) and (4), where T(x) denotes trigonometric integrals (2), are represented as series in terms of Riemann zeta and related functions using the sums of the series (5) and (6), whose terms involve one trigonometric function. These series can be brought in closed form in some cases, where closed form means that the series are represented by finite sums of certain integrals. By specifying the function φ(y) appearing in trigonometric integrals (2) we obtain new series for some special types of functions as well as known results. © 2001, Taylor & Francis Group, LLC. | en |
dc.publisher | Taylor & Francis | - |
dc.relation.ispartof | International Journal of Phytoremediation | en |
dc.subject | 33C40 | 44A15 | Bessel functions | Riemann zeta and related functions | en |
dc.title | Closed form expressions for some series over certain trigonometric integrals | en |
dc.type | Article | en |
dc.identifier.doi | 10.1080/00036810108840979 | en |
dc.identifier.scopus | 2-s2.0-18544374221 | en |
dc.relation.firstpage | 53 | en |
dc.relation.lastpage | 64 | en |
dc.relation.issue | 1-2 | en |
dc.relation.volume | 80 | en |
dc.description.rank | M23 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
SCOPUSTM
Citations
2
checked on Apr 2, 2025
Page view(s)
22
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.