DC FieldValueLanguage
dc.contributor.authorTodorović, Branimiren
dc.contributor.authorStanković, Miomiren
dc.contributor.authorMoraga, Claudioen
dc.date.accessioned2020-12-11T13:04:40Z-
dc.date.available2020-12-11T13:04:40Z-
dc.date.issued2002-01-01en
dc.identifier.isbn978-3-540-44074-1en
dc.identifier.issn0302-9743en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4410-
dc.description.abstractWe consider the recurrent radial basis function network as a model of nonlinear dynamic system. On-line parameter and structure adaptation is unified under the framework of extended Kalman filter. The ability of adaptive system to deal with high observation noise, and the generalization ability of the resulting RRBF network are demonstrated in nonlinear system identification. © Springer-Verlag Berlin Heidelberg 2002.en
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.titleExtended Kalman filter trained recurrent radial basis function network in nonlinear system identificationen
dc.typeConference Paperen
dc.identifier.doi10.1007/3-540-46084-5_133en
dc.identifier.scopus2-s2.0-84902205351en
dc.relation.firstpage819en
dc.relation.lastpage824en
dc.relation.volume2415 LNCSen
dc.description.rankM22-
item.grantfulltextnone-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Show simple item record

SCOPUSTM   
Citations

9
checked on Dec 4, 2024

Page view(s)

18
checked on Dec 4, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.