DC Field | Value | Language |
---|---|---|
dc.contributor.author | Todorović, Branimir | en |
dc.contributor.author | Stanković, Miomir | en |
dc.contributor.author | Moraga, Claudio | en |
dc.date.accessioned | 2020-12-11T13:04:39Z | - |
dc.date.available | 2020-12-11T13:04:39Z | - |
dc.date.issued | 2002-01-01 | en |
dc.identifier.isbn | 0-7803-7593-9 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/4409 | - |
dc.description.abstract | This paper addresses the problem of continuous adaptation of neural networks in a non-stationary environment. We have applied the extended Kalman filter to the parameter, state and structure estimation of a recurrent radial basis function network. The architecture of the recurrent radial basis function network implements a nonlinear autoregressive model with exogenous inputs. Statistical criteria for structure adaptation (growing and pruning of hidden units and connections of the network) were derived using statistics estimated by the Kalman filter. The proposed algorithm is applied to non-stationary dynamic system modeling. | en |
dc.publisher | IEEE | - |
dc.relation.ispartof | 2002 6th Seminar on Neural Network Applications in Electrical Engineering, NEUREL 2002 - Proceedings | en |
dc.subject | extended Kalman filter | nework growing | non-stationary | on-line learning | pruning | recurrent RBF | structure adaptation | en |
dc.title | Modeling non-stationary dynamic system using recurrent radial basis function networks | en |
dc.type | Conference Paper | en |
dc.identifier.doi | 10.1109/NEUREL.2002.1057961 | en |
dc.identifier.scopus | 2-s2.0-84964434557 | en |
dc.relation.firstpage | 27 | en |
dc.relation.lastpage | 32 | en |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairetype | Conference Paper | - |
SCOPUSTM
Citations
1
checked on Jan 13, 2025
Page view(s)
23
checked on Jan 14, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.