DC FieldValueLanguage
dc.contributor.authorStanković, Miomiren
dc.contributor.authorTodorović, Branimiren
dc.contributor.authorVidojković, Bojanaen
dc.date.accessioned2020-12-11T13:04:39Z-
dc.date.available2020-12-11T13:04:39Z-
dc.date.issued2002-01-01en
dc.identifier.isbn0-7803-7593-9en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4408-
dc.description.abstractTime series prediction is based on reconstruction of unknown, possibly chaotic dynamics using a certain number of delayed values of the time series and realizing the mapping between them and future values. The number of previous values used for reconstruction (usually called the embedding dimension) strongly influences the complexity of the mapping. We have applied structurally adaptive RBF networks to determine the embedding dimension and to realize the desired mapping between the past and future values. The method is tested on reconstruction of Henon maps and Lorenz chaotic attractors.en
dc.relation.ispartof2002 6th Seminar on Neural Network Applications in Electrical Engineering, NEUREL 2002 - Proceedingsen
dc.subjectChaotic dynamics | RBF network | reconstruction | structure adaptationen
dc.titleReconstruction of chaotic dynamics using structurally adaptive radial basis function networksen
dc.typeConference Paperen
dc.relation.conference6th Seminar on Neural Network Applications in Electrical Engineering, NEUREL 2002; Faculty of Electrical Engineering, University of BelgradeBelgrade, Yugoslavia; Serbia; 26 September 2002 through 28 September 2002-
dc.identifier.doi10.1109/NEUREL.2002.1057962en
dc.identifier.scopus2-s2.0-84964506106en
dc.relation.firstpage33en
dc.relation.lastpage36en
item.fulltextNo Fulltext-
item.openairetypeConference Paper-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Show simple item record

SCOPUSTM   
Citations

1
checked on Apr 3, 2025

Page view(s)

22
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.