DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stanković, Miomir | en |
dc.contributor.author | Vidanović, Mirjana | en |
dc.contributor.author | Tričković, Slobodan | en |
dc.date.accessioned | 2020-12-11T13:04:39Z | - |
dc.date.available | 2020-12-11T13:04:39Z | - |
dc.date.issued | 2003-01-01 | en |
dc.identifier.issn | 1521-1398 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/4401 | - |
dc.description.abstract | In this paper we consider trigonometric series in terms of the Riemann zeta function and related functions of reciprocal powers. The obtained closed form formulas we apply to the evaluation of the Riemann zeta function and related functions of reciprocal powers. One can establish recursive relations for them and relations between any two of those functions. These closed formulas enable us also to find sums of some Schlömilch series. We give an example which shows how the convergence of a trigonometric series can be accelerated by applying Krylov's method and our formula (7). | en |
dc.publisher | Springer Link | - |
dc.relation.ispartof | Journal of Computational Analysis and Applications | en |
dc.subject | Bessel functions | Riemann zeta and related functions | en |
dc.title | Summation of some trigonometric and Schlömilch series | en |
dc.type | Article | en |
dc.identifier.doi | 10.1023/A:1023275621488 | en |
dc.identifier.scopus | 2-s2.0-3543084431 | en |
dc.relation.firstpage | 313 | en |
dc.relation.lastpage | 331 | en |
dc.relation.issue | 3 | en |
dc.relation.volume | 5 | en |
dc.description.rank | M23 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
SCOPUSTM
Citations
2
checked on Dec 26, 2024
Page view(s)
21
checked on Dec 26, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.