DC FieldValueLanguage
dc.contributor.authorTodorović-Zarkula, Slavicaen
dc.contributor.authorTodorović, Branimiren
dc.contributor.authorStanković, Miomiren
dc.date.accessioned2020-12-11T13:04:37Z-
dc.date.available2020-12-11T13:04:37Z-
dc.date.issued2005-01-01en
dc.identifier.issn0354-0243en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4390-
dc.description.abstractThis paper addresses the problem of blind separation of non-stationary signals. We introduce an on-line separating algorithm for estimation of independent source signals using the assumption of non-stationarity of sources. As a separating model, we apply a self-organizing neural network with lateral connections, and define a contrast function based on correlation of the network outputs. A separating algorithm for adaptation of the network weights is derived using the state-space model of the network dynamics, and the extended Kalman filter. Simulation results obtained in blind separation of artificial and real-world signals from their artificial mixtures have shown that separating algorithm based on the extended Kalman filter outperforms stochastic gradient based algorithm both in convergence speed and estimation accuracy.en
dc.relation.ispartofYugoslav Journal of Operations Researchen
dc.subjectBlind source separation | Decorrelaton | Extended Kalman filter | Neural networksen
dc.titleOn-line blind separation of non-stationary signalsen
dc.typeArticleen
dc.identifier.doi10.2298/YJOR0501079Ten
dc.identifier.scopus2-s2.0-84941963988en
dc.relation.firstpage79en
dc.relation.lastpage95en
dc.relation.issue1en
dc.relation.volume15en
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Show simple item record

Page view(s)

16
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.