DC Field | Value | Language |
---|---|---|
dc.contributor.author | Todorović-Zarkula, Slavica | en |
dc.contributor.author | Todorović, Branimir | en |
dc.contributor.author | Stanković, Miomir | en |
dc.date.accessioned | 2020-12-11T13:04:37Z | - |
dc.date.available | 2020-12-11T13:04:37Z | - |
dc.date.issued | 2005-01-01 | en |
dc.identifier.issn | 0354-0243 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/4390 | - |
dc.description.abstract | This paper addresses the problem of blind separation of non-stationary signals. We introduce an on-line separating algorithm for estimation of independent source signals using the assumption of non-stationarity of sources. As a separating model, we apply a self-organizing neural network with lateral connections, and define a contrast function based on correlation of the network outputs. A separating algorithm for adaptation of the network weights is derived using the state-space model of the network dynamics, and the extended Kalman filter. Simulation results obtained in blind separation of artificial and real-world signals from their artificial mixtures have shown that separating algorithm based on the extended Kalman filter outperforms stochastic gradient based algorithm both in convergence speed and estimation accuracy. | en |
dc.relation.ispartof | Yugoslav Journal of Operations Research | en |
dc.subject | Blind source separation | Decorrelaton | Extended Kalman filter | Neural networks | en |
dc.title | On-line blind separation of non-stationary signals | en |
dc.type | Article | en |
dc.identifier.doi | 10.2298/YJOR0501079T | en |
dc.identifier.scopus | 2-s2.0-84941963988 | en |
dc.relation.firstpage | 79 | en |
dc.relation.lastpage | 95 | en |
dc.relation.issue | 1 | en |
dc.relation.volume | 15 | en |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.