DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tričković, Slobodan | en |
dc.contributor.author | Vidanović, Mirjana | en |
dc.contributor.author | Stanković, Miomir | en |
dc.date.accessioned | 2020-12-11T13:04:37Z | - |
dc.date.available | 2020-12-11T13:04:37Z | - |
dc.date.issued | 2006-01-01 | en |
dc.identifier.issn | 0232-2064 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/4386 | - |
dc.description.abstract | In this article we deal with summation formulas for the series Σn=1∞ Jμ(nx)/nv referring partly to some results from our paper in J. Math. Anal. Appl. 247 (2000) 15-26. We show how these formulas arise from different representations of Bessel functions. In other words, we first apply Poisson's or Bessel's integral, then in the sequel we define a function by means of the power series representation of Bessel functions and make use of Poisson's formula. Also, closed form cases as well as those when it is necessary to take the limit have been thoroughly analyzed. | en |
dc.publisher | European Mathematical Society | - |
dc.relation.ispartof | Zeitschrift fur Analysis und ihre Anwendung | en |
dc.subject | Bessel functions | Fourier's transform | Poisson's formula | Riemann's ζ-function | en |
dc.title | On the summation of series in terms of Bessel functions | en |
dc.type | Article | en |
dc.identifier.doi | 10.4171/ZAA/1296 | en |
dc.identifier.scopus | 2-s2.0-33747682894 | en |
dc.relation.firstpage | 393 | en |
dc.relation.lastpage | 406 | en |
dc.relation.issue | 3 | en |
dc.relation.volume | 25 | en |
dc.description.rank | M23 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
SCOPUSTM
Citations
6
checked on Nov 25, 2024
Page view(s)
18
checked on Nov 25, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.