DC Field | Value | Language |
---|---|---|
dc.contributor.author | Todorovic, Branimir | en |
dc.contributor.author | Stanković, Miomir | en |
dc.contributor.author | Moraga, Claudio | en |
dc.date.accessioned | 2020-12-11T13:04:36Z | - |
dc.date.available | 2020-12-11T13:04:36Z | - |
dc.date.issued | 2006-12-01 | en |
dc.identifier.isbn | 1-4244-0433-9 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/4381 | - |
dc.description.abstract | We consider the problem of recurrent neural network training as a Bayesian state estimation. The proposed algorithm uses Gaussian sum filter for nonlinear, non-Gaussian estimation of network outputs and synaptic weights. The performances of the proposed algorithm and other Bayesian filters are compared in noisy chaotic time series long-term prediction. | en |
dc.publisher | IEEE | - |
dc.relation.ispartof | 8th Seminar on Neural Network Applications in Electrical Engineering, Neurel-2006 Proceedings | en |
dc.subject | Divided difference filter | Extended Kalman filter | Gaussian sum filter | Recurrent neural networks | Sequential Bayesian estimation | Unscented kalman filter | en |
dc.title | Gaussian sum filters for recurrent neural networks training | en |
dc.type | Conference Paper | en |
dc.identifier.doi | 10.1109/NEUREL.2006.341175 | en |
dc.identifier.scopus | 2-s2.0-46749152690 | en |
dc.relation.firstpage | 53 | en |
dc.relation.lastpage | 57 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Conference Paper | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
SCOPUSTM
Citations
1
checked on Apr 2, 2025
Page view(s)
27
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.