DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tricković, Slobodan | en |
dc.contributor.author | Vidanović, Mirjana | en |
dc.contributor.author | Stanković, Miomir | en |
dc.date.accessioned | 2020-12-11T13:04:36Z | - |
dc.date.available | 2020-12-11T13:04:36Z | - |
dc.date.issued | 2007-01-01 | en |
dc.identifier.issn | 1065-2469 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/4379 | - |
dc.description.abstract | This paper is concerned with the summation of series (1). To find the sum of the series (1) we first derive formulas for the summation of series whose general term contains a product of two trigonometric functions. These series are expressed in terms of Riemann's zeta, Catalan's beta function or Dirichlet functions eta and lambda, and in certain cases, thoroughly investigated here, they can be brought in closed form, meaning that the infinite series are represented by finite sums. | en |
dc.publisher | Taylor & Francis | - |
dc.relation.ispartof | Integral Transforms and Special Functions | en |
dc.subject | Bessel functions | Catalan's beta function | Dirichlet | Riemann's zeta | en |
dc.title | Series involving the product of a trigonometric integral and a trigonometric function | en |
dc.type | Article | en |
dc.identifier.doi | 10.1080/10652460701446458 | en |
dc.identifier.scopus | 2-s2.0-34748852461 | en |
dc.relation.firstpage | 751 | en |
dc.relation.lastpage | 763 | en |
dc.relation.issue | 10 | en |
dc.relation.volume | 18 | en |
dc.description.rank | M23 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
SCOPUSTM
Citations
2
checked on Dec 26, 2024
Page view(s)
21
checked on Dec 26, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.