DC FieldValueLanguage
dc.contributor.authorTricković, Slobodanen
dc.contributor.authorVidanović, Mirjanaen
dc.contributor.authorStanković, Miomiren
dc.date.accessioned2020-12-11T13:04:36Z-
dc.date.available2020-12-11T13:04:36Z-
dc.date.issued2007-01-01en
dc.identifier.issn1065-2469en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4379-
dc.description.abstractThis paper is concerned with the summation of series (1). To find the sum of the series (1) we first derive formulas for the summation of series whose general term contains a product of two trigonometric functions. These series are expressed in terms of Riemann's zeta, Catalan's beta function or Dirichlet functions eta and lambda, and in certain cases, thoroughly investigated here, they can be brought in closed form, meaning that the infinite series are represented by finite sums.en
dc.publisherTaylor & Francis-
dc.relation.ispartofIntegral Transforms and Special Functionsen
dc.subjectBessel functions | Catalan's beta function | Dirichlet | Riemann's zetaen
dc.titleSeries involving the product of a trigonometric integral and a trigonometric functionen
dc.typeArticleen
dc.identifier.doi10.1080/10652460701446458en
dc.identifier.scopus2-s2.0-34748852461en
dc.relation.firstpage751en
dc.relation.lastpage763en
dc.relation.issue10en
dc.relation.volume18en
dc.description.rankM23-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Show simple item record

SCOPUSTM   
Citations

2
checked on Dec 26, 2024

Page view(s)

21
checked on Dec 26, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.