DC FieldValueLanguage
dc.contributor.authorTodorović, Branimiren
dc.contributor.authorStanković, Miomiren
dc.contributor.authorMoraga, Claudioen
dc.date.accessioned2020-12-11T13:04:31Z-
dc.date.available2020-12-11T13:04:31Z-
dc.date.issued2014-01-01en
dc.identifier.isbn978-989-758-054-3en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4335-
dc.description.abstractThe problem of recurrent neural network training is considered here as an approximate joint Bayesian estimation of the neuron outputs and unknown synaptic weights. We have implemented recursive estimators using nonlinear derivative free approximation of neural network dynamics. The computational efficiency and performances of proposed algorithms as training algorithms for different recurrent neural network architectures are compared on the problem of long term, chaotic time series prediction.en
dc.relation.ispartofNCTA 2014 - Proceedings of the International Conference on Neural Computation Theory and Applicationsen
dc.subjectBayesian estimation | Chaotic time series prediction | Nonlinear derivative free estimation | Recurrent neural networksen
dc.titleDerivative free training of recurrent neural networks a comparison of algorithms and architecturesen
dc.typeConference Paperen
dc.identifier.doi10.5220/0005081900760084en
dc.identifier.scopus2-s2.0-84908885128en
dc.relation.firstpage76en
dc.relation.lastpage84en
dc.description.rankM33-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 23, 2024

Page view(s)

16
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.