DC FieldValueLanguage
dc.contributor.authorChajda, Ivanen
dc.contributor.authorŠešelja, Branimiren
dc.contributor.authorTepavčević, Andrejaen
dc.date.accessioned2020-04-12T18:10:43Z-
dc.date.available2020-04-12T18:10:43Z-
dc.date.issued1998-01-01en
dc.identifier.issn0002-5240en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/432-
dc.description.abstractThe aim of the paper is to give a framework for the generation of algebraic lattices of compatible relations connected with algebras. These compatible relations satisfy a set of formulas (which can include symmetry and/or transitivity). A particular case are lattices elements of which are all relations reflexive on subalgebras satisfying the same set of formulas, e.g., all tolerances, all quasi-orders, all congruences etc., on all subalgebras of the given algebra (the subalgebra lattice being isomorphic with the ideal generated by the diagonal relation). Using the extension and intersection properties (a generalization of the CEP and the CIP), we give conditions under which these lattices satisfy a lattice identity, such as modularity and distributivity.en
dc.publisherSpringer Link-
dc.relation.ispartofAlgebra Universalisen
dc.subjectCompatible relation | Congruence | Congruence extension property | Quasi-order | Tolerance | Weak-congruence latticeen
dc.titleLattices of compatible relations satisfying a set of formulasen
dc.typeArticleen
dc.identifier.doi10.1007/s000120050080en
dc.identifier.scopus2-s2.0-0040681747en
dc.relation.firstpage51en
dc.relation.lastpage58en
dc.relation.issue1en
dc.relation.volume40en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-5716-604X-
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 23, 2024

Page view(s)

28
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.