DC FieldValueLanguage
dc.contributor.authorRajković, Predragen
dc.contributor.authorMarinković, Slađanaen
dc.contributor.authorStanković, Miomiren
dc.date.accessioned2020-12-11T13:04:30Z-
dc.date.available2020-12-11T13:04:30Z-
dc.date.issued2015-01-01en
dc.identifier.issn0354-5180en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4327-
dc.description.abstractIn this paper, we define and examine a new functional product in the space of real polynomials. This product includes the weight function which depends on degrees of the participants. In spite of it does not have all properties of an inner product, we construct the sequence of orthogonal polynomials. These polynomials can be eigenfunctions of a differential equation what was used in some considerations in the theoretical physics. In special, we consider Laguerre type weight function and prove that the corresponding orthogonal polynomial sequence is connected with Laguerre polynomials. We study their differential properties and orthogonal properties of some related rational and exponential functions.en
dc.publisherUniversity of Niš-
dc.relation.ispartofFilomaten
dc.subjectDifferential properties | Functional product | Laguerre polynomials | Orthogonality | Recurrence relations | Weight functions | Zerosen
dc.titleOrthogonal polynomials with varying weight of laguerre typeen
dc.typeArticleen
dc.identifier.doi10.2298/FIL1505053Ren
dc.identifier.scopus2-s2.0-84929251856en
dc.relation.firstpage1053en
dc.relation.lastpage1062en
dc.relation.issue5en
dc.relation.volume29en
dc.description.rankM21-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-

#### SCOPUSTM Citations

3
checked on Jul 21, 2024

#### Page view(s)

36
checked on May 9, 2024

Check

#### Altmetric

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.