DC FieldValueLanguage
dc.contributor.authorTodorović, Branimiren
dc.contributor.authorMoraga, Claudioen
dc.contributor.authorStanković, Miomiren
dc.date.accessioned2020-12-11T13:04:28Z-
dc.date.available2020-12-11T13:04:28Z-
dc.date.issued2017-10-01en
dc.identifier.issn14349922en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4312-
dc.description.abstract© Springer International Publishing AG 2017. This is short overview of the authors' research in the area of the sequential or recursive Bayesian estimation of recurrent neural networks. Our approach is founded on the joint estimation of synaptic weights, neuron outputs and structure of the recurrent neural networks. Joint estimation enables generalization of the training heuristic known as teacher forcing, which improves the training speed, to the sequential training on noisy data. By applying Gaussian mixture approximation of relevant probability density functions, we have derived training algorithms capable to deal with non-Gaussian (multi modal or heavy tailed) noise on training samples. Finally, we have used statistics, recursively updated during sequential Bayesian estimation, to derive criteria for growing and pruning of synaptic connections and hidden neurons in recurrent neural networks.en
dc.relation.ispartofStudies in Fuzziness and Soft Computingen
dc.titleSequential Bayesian estimation of recurrent neural networksen
dc.typeBook Chapteren
dc.identifier.doi10.1007/978-3-319-48317-7_11en
dc.identifier.scopus2-s2.0-84992361798en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84992361798en
dc.relation.firstpage173en
dc.relation.lastpage199en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.volume349en
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeBook Chapter-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 24, 2024

Page view(s)

17
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.