DC FieldValueLanguage
dc.contributor.authorRajković, Predrag M.en
dc.contributor.authorStanković, Miomir S.en
dc.contributor.authorMarinković, Sladjana D.en
dc.date.accessioned2020-12-11T13:04:27Z-
dc.date.available2020-12-11T13:04:27Z-
dc.date.issued2018-06-26en
dc.identifier.issn13110454en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4304-
dc.description.abstract© 2018 Diogenes Co., Sofia 2018. Based on the easy computation of the direct transform and its inversion, the Laplace transform was used as an effective method for solving differential and integral equations. Its various generalizations appeared in order to be used for treating some new problems. They were based on the generalizations and deformations of the kernel function and of the notion of integral. Here, we expose our generalization of the Laplace transform based on the so-called deformed exponential function of two variables. We point out on some of its properties which hold on in the same or similar manner as in the case of the classical Laplace transform. Relations to a generalized Mittag-Leffler function and to a kind of fractional Riemann-Liouville type integral and derivative are exhibited.en
dc.relation.ispartofFractional Calculus and Applied Analysisen
dc.subjectconvolution | differential operator | exponential function | fractional calculus | integral transformen
dc.titleThe Laplace transform induced by the deformed exponential function of two variablesen
dc.typeArticleen
dc.identifier.doi10.1515/fca-2018-0040en
dc.identifier.scopus2-s2.0-85050333852en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85050333852en
dc.relation.firstpage775en
dc.relation.lastpage785en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issue3en
dc.relation.volume21en
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Show simple item record

Page view(s)

10
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.