DC FieldValueLanguage
dc.contributor.authorFeng, Lihuaen_US
dc.contributor.authorLu, Luen_US
dc.contributor.authorStevanović, Draganen_US
dc.date.accessioned2020-12-09T09:08:51Z-
dc.date.available2020-12-09T09:08:51Z-
dc.date.issued2020-02-10-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4281-
dc.description.abstractFor a given graph, let wk denote the number of its walks with k vertices and let λ1 denote the spectral radius of its adjacency matrix. Nikiforov asked in [Linear Algebra Appl 418 (2006), 257–268] whether it is true in a connected bipartite graph that λr1≥ws+rws for every even s≥2 and even r≥2? We construct here several infinite sequences of connected bipartite graphs with two main eigenvalues for which the ratio ws+rλr1ws is larger than~1 for every even s,r≥2, and thus provide a negative answer to the above problem.en_US
dc.publisherPSR Pressen_US
dc.relationGraph theory and mathematical programming with applications in chemistry and computer scienceen_US
dc.relation.ispartofOpen Journal of Discrete Applied Mathematicsen_US
dc.subjectWalks in a graph | spectral radius | main eigenvaluesen_US
dc.titleWalk counting and Nikiforov’s problemen_US
dc.typeArticleen_US
dc.identifier.doi10.30538/psrp-odam2020.0024-
dc.identifier.urlhttps://pisrt.org/psrpress/j/odam/2020/1/3/walk-counting-and-nikiforov-s-problem.pdf-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.grantno174033en_US
dc.relation.firstpage11-
dc.relation.lastpage19-
dc.relation.issue1-
dc.relation.volume3-
dc.description.rankM53-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174033e.php-
crisitem.project.fundingProgramDirectorate for Computer & Information Science & Engineering-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Computer & Information Science & Engineering/1740333-
crisitem.author.orcid0000-0003-2908-305X-
Show simple item record

Page view(s)

25
checked on Nov 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.