DC FieldValueLanguage
dc.contributor.authorJovanović, Božidaren_US
dc.contributor.authorFedorov, Yuri N.en_US
dc.date.accessioned2020-12-08T09:21:55Z-
dc.date.available2020-12-08T09:21:55Z-
dc.date.issued2020-12-04-
dc.identifier.issn0081-5438-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4275-
dc.description.abstractWe study integrable discretizations of geodesic flows of Euclidean metrics on the cotangent bundles of the Stiefel manifolds Vn,r. In particular, for n=3 and r=2, after the identification V3,2≅SO(3), we obtain a discrete analog of the Euler case of the rigid body motion corresponding to the inertia operator I=(1,1,2). In addition, billiard-type mappings are considered; one of them turns out to be the “square root” of the discrete Neumann system on Vn,r.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofProceedings of the Steklov Institute of Mathematicsen_US
dc.titleDiscrete Geodesic Flows on Stiefel Manifoldsen_US
dc.typeArticleen_US
dc.identifier.doi10.1134/S0081543820050132-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage163-
dc.relation.lastpage174-
dc.relation.volume310-
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 24, 2024

Page view(s)

17
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.