DC FieldValueLanguage
dc.contributor.authorJovanović, Božidaren_US
dc.contributor.authorFedorov, Yuri N.en_US
dc.date.accessioned2020-12-08T09:21:55Z-
dc.date.available2020-12-08T09:21:55Z-
dc.date.issued2020-12-04-
dc.identifier.issn0081-5438-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4275-
dc.description.abstractWe study integrable discretizations of geodesic flows of Euclidean metrics on the cotangent bundles of the Stiefel manifolds Vn,r. In particular, for n=3 and r=2, after the identification V3,2≅SO(3), we obtain a discrete analog of the Euler case of the rigid body motion corresponding to the inertia operator I=(1,1,2). In addition, billiard-type mappings are considered; one of them turns out to be the “square root” of the discrete Neumann system on Vn,r.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofProceedings of the Steklov Institute of Mathematicsen_US
dc.titleDiscrete Geodesic Flows on Stiefel Manifoldsen_US
dc.typeArticleen_US
dc.identifier.doi10.1134/S0081543820050132-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage163-
dc.relation.lastpage174-
dc.relation.volume310-
dc.description.rankM22-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

SCOPUSTM   
Citations

1
checked on Apr 3, 2025

Page view(s)

18
checked on Jan 31, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.