DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jovanović, Božidar | en_US |
dc.contributor.author | Fedorov, Yuri N. | en_US |
dc.date.accessioned | 2020-12-08T09:21:55Z | - |
dc.date.available | 2020-12-08T09:21:55Z | - |
dc.date.issued | 2020-12-04 | - |
dc.identifier.issn | 0081-5438 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/4275 | - |
dc.description.abstract | We study integrable discretizations of geodesic flows of Euclidean metrics on the cotangent bundles of the Stiefel manifolds Vn,r. In particular, for n=3 and r=2, after the identification V3,2≅SO(3), we obtain a discrete analog of the Euler case of the rigid body motion corresponding to the inertia operator I=(1,1,2). In addition, billiard-type mappings are considered; one of them turns out to be the “square root” of the discrete Neumann system on Vn,r. | en_US |
dc.publisher | Springer Link | en_US |
dc.relation.ispartof | Proceedings of the Steklov Institute of Mathematics | en_US |
dc.title | Discrete Geodesic Flows on Stiefel Manifolds | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1134/S0081543820050132 | - |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 163 | - |
dc.relation.lastpage | 174 | - |
dc.relation.volume | 310 | - |
dc.description.rank | M22 | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
crisitem.author.orcid | 0000-0002-3393-4323 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.