DC FieldValueLanguage
dc.date.accessioned2020-12-08T09:02:01Z-
dc.date.available2020-12-08T09:02:01Z-
dc.date.issued2020-10-24-
dc.identifier.isbn978-3-030-56999-0-
dc.identifier.issn2194-1009-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4272-
dc.description.abstractIn this paper, we give detailed analysis and description of periodic trajectories of the billiard system within an ellipsoid in the 3-dimensional Minkowski space, taking into account all possibilities for the caustics. The conditions for periodicity are derived in algebro-geometric, analytic, and polynomial form.en_US
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systemsen_US
dc.relation.ispartofAsymptotic, Algebraic and Geometric Aspects of Integrable Systemsen_US
dc.relation.ispartofseriesSpringer Proceedings in Mathematics & Statisticsen_US
dc.subjectEllipsoidal billiards | Hyper-elliptic curves | Pell’s equation | Periodic trajectories | Poncelet theorem | Pseudo-Euclidean spacesen_US
dc.titlePeriodic Trajectories of Ellipsoidal Billiards in the 3-Dimensional Minkowski Spaceen_US
dc.typeConference Paperen_US
dc.relation.conferenceAsymptotic, Algebraic and Geometric Aspects of Integrable Systems Workshop, 2018; Sanya; China; 9 April 2018 through 13 April 2018en_US
dc.identifier.doi10.1007/978-3-030-57000-2_8-
dc.identifier.scopus2-s2.0-85096608307-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.grantno174020en_US
dc.relation.firstpage159-
dc.relation.lastpage174-
dc.relation.volume338-
dc.description.rankM33-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-0295-4743-

SCOPUSTM Citations

1
checked on Jun 12, 2024

Page view(s)

55
checked on May 9, 2024