DC FieldValueLanguage
dc.contributor.authorGhilezan, Silviaen_US
dc.date.accessioned2020-12-07T10:49:36Z-
dc.date.available2020-12-07T10:49:36Z-
dc.date.issued2007-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4257-
dc.description.abstractThis paper revisits the results of Barendregt and Ghilezan [3] and generalizes them for classical logic. Instead ofλ-calculus, we use hereλμ-calculus as the basic term cal-culus. We consider two extensionally equivalent type assignment systems forλμ-calculus,one corresponding to classical natural deduction, and the other to classical sequent calculus. Their relations and normalisation properties are investigated. As a consequence a short proof of Cut elimination theorem is obtained.en_US
dc.publisherRadboud University, The Netherlandsen_US
dc.relation.ispartofReflections on Type Theory, Lambda Calculus and the Mind, Essays dedicated to Henk Barendregten_US
dc.subjectclassical logic | natural deduction | sequent calculus | normalisation | cut eliminationen_US
dc.titleTerms for Natural Deduction, Sequent Calculus and Cut Elimination in Classical Logic.en_US
dc.typeBook Chapteren_US
dc.identifier.urlhttp://www.cs.ru.nl/barendregt60/essays/ghilezan/art09_ghilezan.pdf-
item.fulltextNo Fulltext-
item.openairetypeBook Chapter-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-2253-8285-
Show simple item record

Page view(s)

20
checked on Jan 31, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.