DC FieldValueLanguage
dc.contributor.authorGhilezan, Silviaen_US
dc.contributor.authorLikavec, Silviaen_US
dc.date.accessioned2020-12-07T10:42:18Z-
dc.date.available2020-12-07T10:42:18Z-
dc.date.issued2009-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4256-
dc.description.abstractThe fundamental connection between logic and computation, known as the Curry–Howard correspondence or formulae-as-types and proofs-as-programs paradigm, relates logical and computational systems. We present an overview of computational interpretations of intuitionistic and classical logic: •intuitionistic natural deduction -λ-calculus •intuitionistic sequent calculus -λGtz-calculus •classical natural deduction -λμ-calculus •classical sequent calculus -λμ ̃μ-calculus. In this work we summarise the authors’ contributions in this field. Fundamental properties of these calculi, such as confluence, normalisation properties, reduction strategies call-by-value and call-by-name,separability, reducibility method, λ-models are in focus. These fundamental properties and their counterparts in logics, via the Curry–Howard correspondence, are discussed.en_US
dc.publisherMathematical Institute of the SASAen_US
dc.relation.ispartofZbornik Radovaen_US
dc.titleComputational interpretations of logicsen_US
dc.typeArticleen_US
dc.identifier.urlhttp://elib.mi.sanu.ac.rs/files/journals/zr/20/n020p159.pdf-
dc.relation.issn0351-9406-
dc.relation.firstpage159-
dc.relation.lastpage215-
dc.relation.issue20-
dc.relation.volume12-
dc.description.rankM14-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0003-2253-8285-
Show simple item record

Page view(s)

23
checked on Nov 19, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.