DC FieldValueLanguage
dc.contributor.authorMitić, Slavkaen
dc.contributor.authorHedrih, Katica (Stevanović)en
dc.date.accessioned2020-11-19T10:50:43Z-
dc.date.available2020-11-19T10:50:43Z-
dc.date.issued1997-12-01en
dc.identifier.issn0001-7043en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4212-
dc.description.abstractThis paper deals with nonlinear oscillations of the torsion oscillator with reciprocal rigidly connected impact masses. It is assumed that two impulses occur at one interval of the disturbing torsion moment. The asymptotic Krilow-Bogolyubov-Mitropolyskiy method is applied, along with the stereomechanical impact theory for the inclusion of impact conditions, to the determination of the primary approximation of the torsion system nonlinear oscillations. Phase trajectories are drawn on the basis of the numerical results. The mathematical model of the vibroimpact system is written in the form of an autonomous nonlinear system of the first order differential equations. The integral curves and the phase trajectories are obtained by means of the Runge-Kutta method, of the Turbo-Pascal program and with the aid of the computer graphics.en
dc.publisherAkademie Ved Ceske Republiky-
dc.relation.ispartofActa Technica CSAV (Ceskoslovensk Akademie Ved)en
dc.subjectImpact conditions | Krilov-Boogolyubov-Mitropolyskiy method | Nonlinear oscillator | Phase trajectories | Stationary vibroimpact representational points | Torsion oscillator | Vibroimpact processesen
dc.titleNonlinear oscillations of the torsion oscillator with impact massesen
dc.typeArticleen
dc.identifier.scopus2-s2.0-0642344878en
dc.relation.firstpage213en
dc.relation.lastpage226en
dc.relation.issue2en
dc.relation.volume42en
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-9773-892X-
Show simple item record

Page view(s)

27
checked on Dec 27, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.