DC FieldValueLanguage
dc.contributor.authorHedrih, Katica (Stevanović)en_US
dc.date.accessioned2020-11-19T10:50:41Z-
dc.date.available2020-11-19T10:50:41Z-
dc.date.issued2003-01-01-
dc.identifier.issn0025-6455en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4206-
dc.description.abstractBy using example of nonlinear dynamics of a pair of coupled gears, the phenomenon of appearance and disappearance of a trigger of coupled singularities and homoclinic orbits in the form of number 'eight' in the phase portrait in the phase plane is investigated. That phenomenon is an accompanying phenomenon of loss of stability of the local unique equilibrium position. For a generalized case under certain conditions, a theorem of the appearance of a trigger of coupled singularities in a nonlinear dynamical conservative system, the first derivative of the system potential energy which is a product of two periodic functions with different periods, and one bifurcation parameter, which is the cause for the appearance of new roots of these two functions, is defined.en_US
dc.publisherSpringer Linken_US
dc.relationReal Problems On Mechanicsen_US
dc.relation.ispartofMeccanicaen_US
dc.subjectConservative system | Homoclinic orbit | Nonlinear dynamics | Stability | Theorem on the existence of a trigger | Trigger of coupled singularities | Turbulent dampingen_US
dc.titleA trigger of coupled singularitiesen_US
dc.typeArticleen_US
dc.identifier.doi10.1023/A:1025889628983-
dc.identifier.scopus2-s2.0-0142211193-
dc.relation.firstpage623en
dc.relation.lastpage642en
dc.relation.issue6en
dc.relation.volume38en
dc.description.rankM23-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/projects/1616e.htm-
crisitem.author.orcid0000-0002-9773-892X-
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 20, 2024

Page view(s)

21
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.