DC FieldValueLanguage
dc.contributor.authorChajda, Ivanen
dc.contributor.authorŠešelja, Branimiren
dc.contributor.authorTepavčević, Andrejaen
dc.date.accessioned2020-04-12T18:10:42Z-
dc.date.available2020-04-12T18:10:42Z-
dc.date.issued2005-01-01en
dc.identifier.issn0011-4642en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/419-
dc.description.abstractSome geometrical methods, the so called Triangular Schemes and Principles, are introduced and investigated for weak congruences of algebras. They are analogues of the corresponding notions for congruences. Particular versions of Triangular Schemes are equivalent to weak congruence modularity and to weak congruence distributivity. For algebras in congruence permutable varieties, stronger properties-Triangular Principles-are equivalent to weak congruence modularity and distributivity.en
dc.publisherSpringer Link-
dc.relation.ispartofCzechoslovak Mathematical Journalen
dc.subjectTriangular principle | Triangular scheme | Weak congruence | Weak congruence distributivity | Weak congruence modularityen
dc.titleA note on triangular schemes for weak congruencesen
dc.typeArticleen
dc.identifier.doi10.1007/s10587-005-0055-4en
dc.identifier.scopus2-s2.0-25444448731en
dc.relation.firstpage683en
dc.relation.lastpage690en
dc.relation.issue3en
dc.relation.volume55en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-5716-604X-
Show simple item record

Page view(s)

20
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.