DC FieldValueLanguage
dc.contributor.authorAtanacković, Teodoren_US
dc.contributor.authorJanev, Markoen_US
dc.contributor.authorPilipović, Stevanen_US
dc.contributor.authorSeleši, Doraen_US
dc.date.accessioned2020-11-02T13:51:37Z-
dc.date.available2020-11-02T13:51:37Z-
dc.date.issued2020-10-05-
dc.identifier.issn0219-4554-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4149-
dc.description.abstractIn this paper, we analyze the restrictions on the coefficients in the constitutive equations of linear Viscoelasticity that follow from the Second Law of Thermodynamics under isothermal conditions. Especially, we analyze the constitutive equations in which fractional derivatives of real and complex order appear. We present the conditions that follow after application of the Bochner-Schwartz theorem. Conditions derived here, representing in certain cases a weak form of the Second law of Thermodynamics, are more general (weaker) than the classical Bagley-Torvik conditions widely used in Viscoelasticity Theory. Several examples that illustrate the theory are presented.en_US
dc.publisherWorld Scientificen_US
dc.relation.ispartofInternational Journal of Structural Stability and Dynamicsen_US
dc.subjectFractional viscoelasticity | Thermodynamical restrictionsen_US
dc.titleViscoelasticity of fractional order: New restrictions on constitutive equations with applicationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0219455420410114-
dc.identifier.scopus2-s2.0-85093105173-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpageArticle no. 2041011-
dc.description.rankM22-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-3246-4988-
Show simple item record

SCOPUSTM   
Citations

7
checked on Dec 4, 2024

Page view(s)

23
checked on Dec 4, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.