DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kuzeljević, Boriša | en_US |
dc.contributor.author | Todorčević, Stevo | en_US |
dc.date.accessioned | 2020-10-19T08:43:16Z | - |
dc.date.available | 2020-10-19T08:43:16Z | - |
dc.date.issued | 2020-06-19 | - |
dc.identifier.issn | 0016-2736 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/4145 | - |
dc.description.abstract | We introduce a forcing notion which forces the P-ideal dichotomy, while every almost Suslin tree from the ground model remains non-special. Thus, while the P-ideal dichotomy implies the Suslin Hypothesis, or equivalently that every Aronszajn tree has an uncountable antichain, it does not imply that every Aronszajn tree has a stationary antichain. | en_US |
dc.publisher | Instytut Matematyczny Polskiej Akademii Nauk | en_US |
dc.relation.ispartof | Fundamenta Mathematicae | en_US |
dc.subject | Almost Suslin tree | P-ideal dichotomy | Special Aronszajn tree | en_US |
dc.title | P-ideal dichotomy and a strong form of the suslin hypothesis | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.4064/fm864-2-2020 | - |
dc.identifier.scopus | 2-s2.0-85092297457 | - |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
dc.relation.firstpage | 17 | - |
dc.relation.lastpage | 33 | - |
dc.relation.issue | 1 | - |
dc.relation.volume | 251 | - |
dc.description.rank | M23 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0003-4543-7962 | - |
SCOPUSTM
Citations
4
checked on Nov 24, 2024
Page view(s)
16
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.