DC FieldValueLanguage
dc.contributor.authorKuzeljević, Borišaen_US
dc.contributor.authorTodorčević, Stevoen_US
dc.date.accessioned2020-10-19T08:43:16Z-
dc.date.available2020-10-19T08:43:16Z-
dc.date.issued2020-06-19-
dc.identifier.issn0016-2736-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4145-
dc.description.abstractWe introduce a forcing notion which forces the P-ideal dichotomy, while every almost Suslin tree from the ground model remains non-special. Thus, while the P-ideal dichotomy implies the Suslin Hypothesis, or equivalently that every Aronszajn tree has an uncountable antichain, it does not imply that every Aronszajn tree has a stationary antichain.en_US
dc.publisherInstytut Matematyczny Polskiej Akademii Nauken_US
dc.relation.ispartofFundamenta Mathematicaeen_US
dc.subjectAlmost Suslin tree | P-ideal dichotomy | Special Aronszajn treeen_US
dc.titleP-ideal dichotomy and a strong form of the suslin hypothesisen_US
dc.typeArticleen_US
dc.identifier.doi10.4064/fm864-2-2020-
dc.identifier.scopus2-s2.0-85092297457-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage17-
dc.relation.lastpage33-
dc.relation.issue1-
dc.relation.volume251-
dc.description.rankM23-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

2
checked on Jun 11, 2024

Page view(s)

73
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.