DC FieldValueLanguage
dc.contributor.authorDodig, Marijaen_US
dc.contributor.authorStošić, Markoen_US
dc.date.accessioned2020-09-21T07:43:41Z-
dc.date.available2020-09-21T07:43:41Z-
dc.date.issued2020-07-21-
dc.identifier.issn1537-9582-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4061-
dc.description.abstractIn this paper, the possible Kronecker invariants of a matrix pencil obtained by simultaneous one row and one column completion of a given matrix pencil are characterized. This presents a new approach to the General Matrix Pencil Completion Problem (GMPCP), where simultaneous row and column completion is considered.en_US
dc.publisherInternational Linear Algebra Societyen_US
dc.relationGeometry, Education and Visualization With Applicationsen_US
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systemsen_US
dc.relation.ispartofElectronic Journal of Linear Algebraen_US
dc.subjectCompletion of matrix pencils | Kronecker invariants | Partitions of integersen_US
dc.titleGMPCP for one row and one column completionen_US
dc.typeArticleen_US
dc.identifier.doi10.13001/ela.2020.5203-
dc.identifier.scopus2-s2.0-85090689865-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.grantno174012en_US
dc.relation.grantno174020en_US
dc.relation.firstpage473-
dc.relation.lastpage483-
dc.relation.issue1-
dc.relation.volume36-
dc.description.rankM23-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0001-8209-6920-
crisitem.author.orcid0000-0002-4464-396X-
Show simple item record

Page view(s)

27
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.