DC FieldValueLanguage
dc.contributor.authorStanojević, Bogdanaen_US
dc.contributor.authorStanojević, Milanen_US
dc.date.accessioned2020-08-25T08:46:17Z-
dc.date.available2020-08-25T08:46:17Z-
dc.date.issued2021-01-01-
dc.identifier.isbn978-3-030-53650-3-
dc.identifier.issn2194-5357-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/4007-
dc.description.abstractWe approach the full fuzzy linear programming by grounding the definition of the optimal solution in the extension principle framework. Employing a Monte Carlo simulation, we compare an empirically derived solution to the solutions yielded by approaches proposed in the literature. We also propose a model able to numerically describe the membership function of the fuzzy set of feasible objective values. At the same time, the decreasing (increasing) side of this membership function represents the right (left) side of the membership function of the fuzzy set containing the maximal (minimal) objective values. Our aim is to provide decision-makers with relevant information on the extreme values that the objective function can reach under uncertain given constraints.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofAdvances in Intelligent Systems and Computingen_US
dc.subjectExtension principle | Full fuzzy linear programming | Fuzzy numbers | Monte Carlo simulationen_US
dc.titleEmpirical versus analytical solutions to full fuzzy linear programmingen_US
dc.typeConference Paperen_US
dc.relation.conference8th International Conference on Computers Communications and Control, ICCCC 2020 ; Oradea; Romania; 11 May 2020 through 15 May 2020en_US
dc.identifier.doi10.1007/978-3-030-53651-0_19-
dc.identifier.scopus2-s2.0-85089315309-
dc.contributor.affiliationComputer Scienceen_US
dc.relation.firstpage220-
dc.relation.lastpage233-
dc.relation.volume1243 AISC-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-4524-5354-
Show simple item record

SCOPUSTM   
Citations

5
checked on Jun 11, 2024

Page view(s)

59
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.