DC FieldValueLanguage
dc.contributor.authorChurch, Lewisen_US
dc.contributor.authorĐurđevac, Anaen_US
dc.contributor.authorElliott, Charlesen_US
dc.date.accessioned2020-08-07T13:25:17Z-
dc.date.available2020-08-07T13:25:17Z-
dc.date.issued2020-01-01-
dc.identifier.issn0029-599X-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/3967-
dc.description.abstractIn this article, we analyse the domain mapping method approach to approximate statistical moments of solutions to linear elliptic partial differential equations posed over random geometries including smooth surfaces and bulk-surface systems. In particular, we present the necessary geometric analysis required by the domain mapping method to reformulate elliptic equations on random surfaces onto a fixed deterministic surface using a prescribed stochastic parametrisation of the random domain. An abstract analysis of a finite element discretisation coupled with a Monte-Carlo sampling is presented for the resulting elliptic equations with random coefficients posed over the fixed curved reference domain and optimal error estimates are derived. The results from the abstract framework are applied to a model elliptic problem on a random surface and a coupled elliptic bulk-surface system and the theoretical convergence rates are confirmed by numerical experiments.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofNumerische Mathematiken_US
dc.subjectDomain mapping method | Random domains | Random elliptic equations | Surface finite element methoden_US
dc.titleA domain mapping approach for elliptic equations posed on random bulk and surface domainsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00211-020-01139-7-
dc.identifier.scopus2-s2.0-85088873889-
dc.relation.firstpage1-
dc.relation.lastpage49-
dc.relation.volume146-
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 25, 2024

Page view(s)

10
checked on Nov 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.