DC FieldValueLanguage
dc.contributor.authorMilićević, Lukaen_US
dc.date.accessioned2020-07-28T09:22:16Z-
dc.date.available2020-07-28T09:22:16Z-
dc.date.issued2020-01-01-
dc.identifier.issn0350-1302-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/3960-
dc.description.abstractA strong triangle blocking arrangement is a geometric arrangement of some line segments in a triangle with certain intersection properties. It turns out that they are closely related to blocking sets. We prove a classification theorem for strong triangle blocking arrangements. As an application, we obtain a new proof of the result of Ackerman, Buchin, Knauer, Pinchasi and Rote which says that n points in general position cannot be blocked by n-1 points, unless n = 2, 4. We also conjecture an extremal variant of the blocking points problem.en_US
dc.publisherMathematical Institute of the SASAen_US
dc.relationRepresentations of logical structures and formal languages and their application in computingen_US
dc.relation.ispartofPublications de l'Institut Mathematiqueen_US
dc.subjectBlocking sets | Ordinary lines | Segment arrangementsen_US
dc.titleClassification theorem for strong triangle blocking arrangementsen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/PIM2021001M-
dc.identifier.scopus2-s2.0-85087956794-
dc.identifier.urlhttp://elib.mi.sanu.ac.rs/files/journals/publ/127/publn127p1-36.pdf-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.grantno174026en_US
dc.relation.firstpage1-
dc.relation.lastpage36-
dc.relation.issue121-
dc.relation.volume107-
dc.description.rankM24-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-1427-7241-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174026e.php-
crisitem.project.fundingProgramDirectorate for Social, Behavioral & Economic Sciences-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Social, Behavioral & Economic Sciences/1740267-
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 19, 2024

Page view(s)

18
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.