DC FieldValueLanguage
dc.contributor.authorŠešelja, Branimiren_US
dc.contributor.authorSlivková, Annaen_US
dc.contributor.authorTepavčević, Andrejaen_US
dc.date.accessioned2020-07-24T09:10:01Z-
dc.date.available2020-07-24T09:10:01Z-
dc.date.issued2020-08-01-
dc.identifier.issn0002-5240-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/3937-
dc.descriptionArticle no. 42-
dc.description.abstractThe aim of this paper is to extend the notions of geometric lattices, semimodularity and matroids in the framework of finite posets and related systems of sets. We define a geometric poset as one which is atomistic and which satisfies particular conditions connecting elements to atoms. Next, by using a suitable partial closure operator and the corresponding partial closure system, we define a partial matroid. We prove that the range of a partial matroid is a geometric poset under inclusion, and conversely, that every finite geometric poset is isomorphic to the range of a particular partial matroid. Finally, by introducing a new generalization of semimodularity from lattices to posets, we prove that a poset is geometric if and only if it is atomistic and semimodular.en_US
dc.publisherSpringer Linken_US
dc.relationSerbian Ministry of Education, Science and Technological Development through Faculty of Science, University of Novi Sad, (Grant No. 451-03-68/2020-14/200125) and through Mathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.ispartofAlgebra Universalisen_US
dc.subjectCentralized system | Geometric posets | Partial closure operator | Partial closure system | Semimodularityen_US
dc.titleOn geometric posets and partial matroidsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00012-020-00673-7-
dc.identifier.scopus2-s2.0-85087869390-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.issue3-
dc.relation.volume81-
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-5716-604X-
Show simple item record

Page view(s)

21
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.