DC FieldValueLanguage
dc.contributor.authorDošen, Kosta-
dc.contributor.authorPetrić, Zoran-
dc.date.accessioned2020-07-14T07:23:59Z-
dc.date.available2020-07-14T07:23:59Z-
dc.date.issued2003-
dc.identifier.issn0350-1302-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/3840-
dc.description.abstractThis paper is a companion to another paper where it is shown that the multiplicative monoids of Temperley-Lieb algebras are isomorphic to monoids of endomorphisms in categories where en endofunctor is adjoint to itself. Such a self-adjunction underlines the orthogonal group case of Baruer's representation of the Baruer centralizer algebras. The present paper provides detailed proofs of results on the presentation of various monoids of diagrams by generators and relations, on which the other paper depends.-
dc.relationRepresentation of Proofs with Applications, Classification of Structures and Infinite Combinatorics-
dc.relation.ispartofPublications de l'Institut Mathématique-
dc.titleThe geometry of self-adjunction-
dc.typeArticle-
dc.identifier.urlhttp://elib.mi.sanu.ac.rs/files/journals/publ/93/n087p001.pdf-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage1-
dc.relation.lastpage29-
dc.relation.issue87-
dc.relation.volume73-
dc.description.rankM24-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0003-2049-9892-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/projects/1630e.htm-
Show simple item record

Page view(s)

25
checked on Nov 19, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.