DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stošić, Marko | - |
dc.contributor.author | Wedrich, Paul | - |
dc.date.accessioned | 2020-07-14T07:23:55Z | - |
dc.date.available | 2020-07-14T07:23:55Z | - |
dc.date.issued | 2019-01-14 | - |
dc.identifier.issn | 1073-7928 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/3828 | - |
dc.description.abstract | We prove that the generating functions for the colored HOMFLY-PT polynomials of rational links are specializations of the generating functions of the motivic Donaldson–Thomas invariants of appropriate quivers that we naturally associate with these links. This shows that the conjectural links–quivers correspondence of Kucharski–Reineke–Stošić–Sułkowski as well as the LMOV conjecture holds for all rational links. Along the way, we extend the links–quivers correspondence to tangles and, thus, explore elements of a skein theory for motivic Donaldson–Thomas invariants. | - |
dc.publisher | Oxford University Press | - |
dc.relation | UK Engineering and Physical Sciences Research Council, Grant Number EP/K032208/1 | - |
dc.relation.ispartof | International Mathematics Research Notices | - |
dc.title | Rational Links and DT Invariants of Quivers | - |
dc.type | Article | - |
dc.identifier.doi | 10.1093/imrn/rny289 | - |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.description.rank | M21 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-4464-396X | - |
SCOPUSTM
Citations
9
checked on Dec 20, 2024
Page view(s)
17
checked on Dec 22, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.