DC FieldValueLanguage
dc.contributor.authorDragović, Vladimiren_US
dc.date.accessioned2020-07-13T10:32:43Z-
dc.date.available2020-07-13T10:32:43Z-
dc.date.issued1996-01-01-
dc.identifier.issn0305-4470-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/3799-
dc.description.abstractAll integrable mechanical systems describing motion of a particle on an ellipsoid surface in three-dimensional space are described in the class of the Loran polynomial potentials. Two countable families of the basic solutions are obtained. Explicit formulae are given. The limit, when the considered system goes into the billiard system within an ellipse, is analysed, and the results are compared with those obtained previously, in relation to the billiard system.en_US
dc.publisherIOP Scienceen_US
dc.relation.ispartofJournal of Physics A: Mathematical and Generalen_US
dc.titleOn integrable potential perturbations of the Jacobi problem for the geodesies on the ellipsoiden_US
dc.typeArticleen_US
dc.identifier.doi10.1088/0305-4470/29/13/002-
dc.identifier.scopus2-s2.0-21344459882-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpageL317-
dc.relation.lastpageL321-
dc.relation.issue13-
dc.relation.volume29-
dc.description.rankM21-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-0295-4743-
Show simple item record

SCOPUSTM   
Citations

12
checked on Jul 21, 2024

Page view(s)

31
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.