DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dragović, Vladimir | en_US |
dc.date.accessioned | 2020-07-13T10:32:43Z | - |
dc.date.available | 2020-07-13T10:32:43Z | - |
dc.date.issued | 1996-01-01 | - |
dc.identifier.issn | 0305-4470 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/3799 | - |
dc.description.abstract | All integrable mechanical systems describing motion of a particle on an ellipsoid surface in three-dimensional space are described in the class of the Loran polynomial potentials. Two countable families of the basic solutions are obtained. Explicit formulae are given. The limit, when the considered system goes into the billiard system within an ellipse, is analysed, and the results are compared with those obtained previously, in relation to the billiard system. | en_US |
dc.publisher | IOP Science | en_US |
dc.relation.ispartof | Journal of Physics A: Mathematical and General | en_US |
dc.title | On integrable potential perturbations of the Jacobi problem for the geodesies on the ellipsoid | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1088/0305-4470/29/13/002 | - |
dc.identifier.scopus | 2-s2.0-21344459882 | - |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
dc.relation.firstpage | L317 | - |
dc.relation.lastpage | L321 | - |
dc.relation.issue | 13 | - |
dc.relation.volume | 29 | - |
dc.description.rank | M21 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0002-0295-4743 | - |
SCOPUSTM
Citations
12
checked on Nov 24, 2024
Page view(s)
16
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.