Authors: Karličić, Danilo 
Kozić, Predrag
Pavlović, Ratko
Affiliations: Mathematical Institute of the Serbian Academy of Sciences and Arts 
Title: Flexural vibration and buckling analysis of single-walled carbon nanotubes using different gradient elasticity theories based on reddy and huu-tai formulations
Journal: Journal of Theoretical and Applied Mechanics (Poland)
Volume: 53
Issue: 1
First page: 217
Last page: 233
Issue Date: 1-Jan-2015
Rank: M23
ISSN: 1429-2955
DOI: 10.15632/jtam-pl.53.1.217
The aim of the present work is to analyze free flexural vibration and buckling of single-walled carbon nanotubes (SWCNT) under compressive axial loading based on different constitutive equations and beam theories. The models contain a material length scale parameter that can capture the size effect, unlike the classical Euler-Bernoulli or Reddy beam theory. The equations of motion of the Reddy and the Huu-Tai beam theories are reformulated using different gradient elasticity theories, including stress, strain and combined strain/inertia. The equations of motion are derived from Hamilton's principle in terms of the generalized displacements. Analytical solutions of free vibration and buckling are presented to bring out the effect of the nonlocal behavior on natural frequencies and buckling loads. The presented theoretical analysis is illustrated by a numerical example, and the results are qualitatively compared by another results.
Keywords: Critical buckling load | Gradient elasticity theories | Natural frequency | Nonlocal behavior
Publisher: Polish Society of Theoretical and Allied Mechanics
Project: Dynamics of hybrid systems with complex structures. Mechanics of materials. 
Dynamic stability and instability of mechanical systems subjected to stochastic excitations 

Show full item record


checked on Jun 18, 2024

Page view(s)

checked on May 9, 2024

Google ScholarTM




Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.