DC FieldValueLanguage
dc.contributor.authorKucharski, Piotren_US
dc.contributor.authorReineke, Markusen_US
dc.contributor.authorStošić, Markoen_US
dc.contributor.authorSułkowski, Piotren_US
dc.date.accessioned2020-07-06T10:12:56Z-
dc.date.available2020-07-06T10:12:56Z-
dc.date.issued2019-01-01-
dc.identifier.issn1095-0761-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/3757-
dc.description.abstractWe introduce and explore the relation between knot invariants and quiver representation theory, which follows from the identification of quiver quantum mechanics in D-brane systems representing knots. We identify various structural properties of quivers associated to knots, and identify such quivers explicitly in many examples, including some infinite families of knots, all knots up to 6 crossings, and some knots with thick homology. Moreover, based on these properties, we derive previously unknown expressions for colored HOMFLY-PT polynomials and superpolynomials for various knots. For all knots, for which we identify the corresponding quivers, the LMOV conjecture for all symmetric representations (i.e. integrality of relevant BPS numbers) is automatically proved.en_US
dc.publisherInternational Pressen_US
dc.relationQuantum fields and knot homologiesen_US
dc.relationGeometry, Education and Visualization With Applicationsen_US
dc.relation.ispartofAdvances in Theoretical and Mathematical Physicsen_US
dc.titleKnots-quivers correspondenceen_US
dc.typeArticleen_US
dc.identifier.doi10.4310/ATMP.2019.V23.N7.A4-
dc.identifier.scopus2-s2.0-85086910897-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.grantno335739en_US
dc.relation.grantno174012en_US
dc.relation.firstpage1849-
dc.relation.lastpage1902-
dc.relation.issue7-
dc.relation.volume23-
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.project.funderNSF-
crisitem.project.fundingProgramDirectorate for Education & Human Resources-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Education & Human Resources/0335739-
crisitem.author.orcid0000-0002-4464-396X-
Show simple item record

SCOPUSTM   
Citations

36
checked on Dec 20, 2024

Page view(s)

29
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.