DC FieldValueLanguage
dc.contributor.authorStanković, Radomir-
dc.contributor.authorStanković, Milena-
dc.contributor.authorAstola, Jaakko-
dc.contributor.authorMoraga, Claudio-
dc.date.accessioned2020-07-03T09:58:09Z-
dc.date.available2020-07-03T09:58:09Z-
dc.date.issued2019-
dc.identifier.isbn978-3-030-20322-1-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/3754-
dc.description.abstractBent functions, that are useful in cryptographic applications, can be characterized in different ways. A recently formulated characterization is in terms of the Gibbs dyadic derivative. This characterization can be interpreted through permutation matrices associated with bent functions by this differential operator. We point out that these permutation matrices express some characteristic block structure and discuss a possible determination of it as a set of rules that should be satisfied by the corresponding submatrices. We believe that a further study of this structure can bring interesting results providing a deeper insight into features of bent functions.-
dc.publisherSpringer Link-
dc.subjectBent functions | Walsh functions | Dyadic derivatives | Permutation matrices-
dc.titleTowards the Structure of a Class of Permutation Matrices Associated with Bent Functions-
dc.typeBook Chapter-
dc.relation.publicationAdvanced Boolean Techniques-
dc.identifier.doi10.1007/978-3-030-20323-8_4-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage83-
dc.relation.lastpage105-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeBook Chapter-
item.grantfulltextnone-
item.fulltextNo Fulltext-
Show simple item record

Page view(s)

20
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.