DC FieldValueLanguage
dc.contributor.authorEghosa Edeghagba, Elijahen
dc.contributor.authorŠešelja, Branimiren
dc.contributor.authorTepavčević, Andrejaen
dc.date.accessioned2020-04-12T18:10:37Z-
dc.date.available2020-04-12T18:10:37Z-
dc.date.issued2017-03-15en
dc.identifier.issn0165-0114en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/369-
dc.description.abstractIn the framework of Ω-sets, where Ω is a complete lattice, we introduce Ω-lattices, both as algebraic and as order structures. An Ω-poset is an Ω-set equipped with an Ω-valued order which is antisymmetric with respect to the corresponding Ω-valued equality. Using a cut technique, we prove that the quotient cut-substructures can be naturally ordered. Introducing notions of pseudo-infimum and pseudo-supremum, we obtain a definition of an Ω-lattice as an ordering structure. An Ω-lattice as an algebra is a bi-groupoid equipped with an Ω-valued equality, fulfilling particular lattice-theoretic formulas. On an Ω-lattice we introduce an Ω-valued order, and we prove that particular quotient substructures are classical lattices. Assuming Axiom of Choice, we prove that the two approaches are equivalent.en
dc.publisherElsevier-
dc.relationDevelopment of methods of computation and information processing: theory and applications-
dc.relation.ispartofFuzzy Sets and Systemsen
dc.subjectComplete lattice | Fuzzy congruence | Fuzzy equality | Fuzzy identity | Fuzzy latticeen
dc.titleΩ-Latticesen
dc.typeArticleen
dc.identifier.doi10.1016/j.fss.2016.10.011en
dc.identifier.scopus2-s2.0-85006061424en
dc.relation.firstpage53en
dc.relation.lastpage69en
dc.relation.volume311en
dc.description.rankM21a-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-5716-604X-
crisitem.project.funderMESTD-
crisitem.project.fundingProgramBasic Research (BR or ON)-
crisitem.project.openAireinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174013-
Show simple item record

SCOPUSTM   
Citations

7
checked on Apr 2, 2025

Page view(s)

23
checked on Jan 31, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.