DC FieldValueLanguage
dc.contributor.authorEghosa Edeghagba, Elijahen
dc.contributor.authorŠešelja, Branimiren
dc.contributor.authorTepavčević, Andrejaen
dc.date.accessioned2020-04-12T18:10:37Z-
dc.date.available2020-04-12T18:10:37Z-
dc.date.issued2017-03-15en
dc.identifier.issn0165-0114en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/369-
dc.description.abstractIn the framework of Ω-sets, where Ω is a complete lattice, we introduce Ω-lattices, both as algebraic and as order structures. An Ω-poset is an Ω-set equipped with an Ω-valued order which is antisymmetric with respect to the corresponding Ω-valued equality. Using a cut technique, we prove that the quotient cut-substructures can be naturally ordered. Introducing notions of pseudo-infimum and pseudo-supremum, we obtain a definition of an Ω-lattice as an ordering structure. An Ω-lattice as an algebra is a bi-groupoid equipped with an Ω-valued equality, fulfilling particular lattice-theoretic formulas. On an Ω-lattice we introduce an Ω-valued order, and we prove that particular quotient substructures are classical lattices. Assuming Axiom of Choice, we prove that the two approaches are equivalent.en
dc.publisherElsevier-
dc.relationDevelopment of methods of computation and information processing: theory and applications-
dc.relation.ispartofFuzzy Sets and Systemsen
dc.subjectComplete lattice | Fuzzy congruence | Fuzzy equality | Fuzzy identity | Fuzzy latticeen
dc.titleΩ-Latticesen
dc.typeArticleen
dc.identifier.doi10.1016/j.fss.2016.10.011en
dc.identifier.scopus2-s2.0-85006061424en
dc.relation.firstpage53en
dc.relation.lastpage69en
dc.relation.volume311en
dc.description.rankM21a-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.project.funderMESTD-
crisitem.project.fundingProgramBasic Research (BR or ON)-
crisitem.project.openAireinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174013-
crisitem.author.orcid0000-0002-5716-604X-
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 23, 2024

Page view(s)

19
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.