DC FieldValueLanguage
dc.contributor.authorDošen, Kostaen
dc.contributor.authorPetrić, Zoranen
dc.date.accessioned2020-04-12T18:10:35Z-
dc.date.available2020-04-12T18:10:35Z-
dc.date.issued2001-01-01en
dc.identifier.issn0942-5616en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/353-
dc.description.abstractIt is proved that equations between arrows assumed for cartesian categories are maximal in the sense that extending them with any new equation in the language of free cartesian categories collapses a cartesian category into a preorder. An analogous result holds for categories with binary products, which may lack a terminal object. The proof is based on a coherence result for cartesian categories, which is related to model-theoretic methods of normalization. This maximality of cartesian categories, which is analogous to Post completeness, shows that the usual equivalence between deductions in conjunctive logic induced by βη normalization in natural deduction is chosen optimally.en
dc.publisherWiley-
dc.relation.ispartofMathematical Logic Quarterlyen
dc.subjectCartesian categories | Coherence | Conjunctive logic | Natural deduction | Post completenessen
dc.titleThe maximality of cartesian categoriesen
dc.typeArticleen
dc.identifier.doi10.1002/1521-3870(200101)47:1<137::AID-MALQ137>3.0.CO;2-Fen
dc.identifier.scopus2-s2.0-0035530935en
dc.relation.firstpage137en
dc.relation.lastpage144en
dc.relation.issue1en
dc.relation.volume47en
dc.description.rankM23-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-2049-9892-
Show simple item record

SCOPUSTM   
Citations

12
checked on Apr 1, 2025

Page view(s)

30
checked on Jan 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.