DC FieldValueLanguage
dc.contributor.authorPetrić, Zoranen
dc.date.accessioned2020-04-12T18:10:35Z-
dc.date.available2020-04-12T18:10:35Z-
dc.date.issued2002-01-01en
dc.identifier.issn0039-3215en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/349-
dc.description.abstractIt is proved that MacLane's coherence results for monoidal and symmetric monoidal categories can be extended to some other categories with multiplication; namely, to relevant, affine and cartesian categories. All results are formulated in terms of natural transformations equipped with "graphs" (g-natural transformations) and corresponding morphism theorems are given as consequences. Using these results, some basic relations between the free categories of these classes are obtained.en
dc.publisherSpringer Link-
dc.relationRepresentation of Proofs with Applications, Classification of Structures and Infinite Combinatorics-
dc.relation.ispartofStudia Logicaen
dc.subjectCategorial proof theory | Coherence | Substructural logicsen
dc.titleCoherence in substructural categoriesen
dc.typeArticleen
dc.identifier.doi10.1023/A:1015186718090en
dc.identifier.scopus2-s2.0-54649083413en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage271en
dc.relation.lastpage296en
dc.relation.issue2en
dc.relation.volume70en
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0003-2049-9892-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/projects/1630e.htm-
Show simple item record

SCOPUSTM   
Citations

11
checked on Nov 18, 2024

Page view(s)

19
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.