DC FieldValueLanguage
dc.contributor.authorBaralić, Đorđe-
dc.contributor.authorSpasojević, Igor-
dc.date.accessioned2020-07-01T14:33:46Z-
dc.date.available2020-07-01T14:33:46Z-
dc.date.issued2013-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/3459-
dc.description.abstractThis article is supplementary to the our paper 'Illumination of Pascal's Hexagrammum and Octagrammum Mysticum', [1]. We give complete proof of Propositions 3.1, 3.4, 4.1, 4.2 and 4.3 from [1]. In our research we use the program Cinderella for studying the points, lines, conics and cubics in Pascal's Hexagon construction. Our main tool for proofs is Bezout's theorem.-
dc.publisherUniverzitet u Istočnom Sarajevu, Filozofski fakultet Pale-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.titleNew Theorems about Pascal’s Hexagram-
dc.typeConference Paper-
dc.relation.conferenceSecond Mathematical Conference of Republic of Srpska-
dc.identifier.urlhttp://www.mk.rs.ba/?page_id=1011-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage41-
dc.relation.lastpage48-
dc.description.rankM30-
item.cerifentitytypePublications-
item.openairetypeConference Paper-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-2836-7958-
Show simple item record

Page view(s)

39
checked on May 9, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.