DC Field | Value | Language |
---|---|---|
dc.contributor.author | Došen, Kosta | en |
dc.contributor.author | Petrić, Zoran | en |
dc.date.accessioned | 2020-04-12T18:10:34Z | - |
dc.date.available | 2020-04-12T18:10:34Z | - |
dc.date.issued | 2003-11-24 | en |
dc.identifier.issn | 0942-5616 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/344 | - |
dc.description.abstract | Split preorders are preordering relations on a domain whose composition is defined in a particular way by splitting the domain into two disjoint subsets. These relations and the associated composition arise in categorial proof theory in connection with coherence theorems. Here split preorders are represented isomorphically in the category whose arrows are binary relations and whose composition is defined in the usual way. This representation is related to a classical result of representation theory due to Richard Brauer. | en |
dc.publisher | Wiley | - |
dc.relation.ispartof | Mathematical Logic Quarterly | en |
dc.subject | Brauer algebras | Categories of proofs | Digraphs | Identity criteria for proofs | Representation | en |
dc.title | A Brauerian representation of split preorders | en |
dc.type | Article | en |
dc.identifier.doi | 10.1002/malq.200310063 | en |
dc.identifier.scopus | 2-s2.0-0242593017 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 579 | en |
dc.relation.lastpage | 586 | en |
dc.relation.issue | 6 | en |
dc.relation.volume | 49 | en |
dc.description.rank | M22 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0003-2049-9892 | - |
SCOPUSTM
Citations
11
checked on Apr 1, 2025
Page view(s)
20
checked on Jan 30, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.