DC FieldValueLanguage
dc.contributor.authorGajić, Borislav-
dc.contributor.authorJovanović, Božidar-
dc.date.accessioned2020-07-01T14:33:42Z-
dc.date.available2020-07-01T14:33:42Z-
dc.date.issued2019-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/3427-
dc.description.abstractIn this talk we consider the nonholonomic problem of rolling without slipping and twisting of a n-dimensional ball over a fixed (n−1)-dimensional sphere. This is a SO(n)-Chaplygin system with an invariant measure that reduces to the tangent bundle TSn−1. We describe two classes of inertia operators, such that corresponding systems are integrable. In the first class we use the Chaplygin reducing multiplier method, while in the second class we obtain integrability directly — without Hamiltonization.-
dc.publisherInstitute for Computer Science, Moscow - Izhevsk-
dc.relation.ispartofAdvances in Nonlinear Science-
dc.titleTwo integrable models of rolling balls over a sphere-
dc.typeConference Paper-
dc.relation.conferenceInternational Conference “Scientific Heritage of Sergey A. Chaplygin: nonholonomic mechanics, vortex structures and hydrodynamics, Cheboksary, 2-6 June 2019-
dc.identifier.urlhttp://umu.chuvsu.ru/chaplygin2019/docs/TezisChap.pdf-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage71-
dc.relation.lastpage71-
dc.description.rankM30-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-1463-0113-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

Page view(s)

18
checked on Nov 19, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.