DC Field | Value | Language |
---|---|---|
dc.contributor.author | Došen, Kosta | en |
dc.contributor.author | Petrić, Zoran | en |
dc.date.accessioned | 2020-04-12T18:10:33Z | - |
dc.date.available | 2020-04-12T18:10:33Z | - |
dc.date.issued | 2007-12-01 | en |
dc.identifier.issn | 0350-1302 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/339 | - |
dc.description.abstract | A relevant category is a symmetric monoidal closed category with a diagonal natural transformation that satisfies some coherence conditions. Every cartesian closed category is a relevant category in this sense. The denomination relevant comes from the connection with relevant logic. It is shown that the category of sets with partial functions, which is isomorphic to the category of pointed sets, is a category that is relevant, but not cartesian closed. | en |
dc.publisher | Mathematical Institute of SASA | - |
dc.relation.ispartof | Publications de l'Institut Mathematique | en |
dc.subject | Diagonal natural transformation | Intuitionistic relevant logic | Partial functions | Pointed sets | Symmetric monoidal closed categories | en |
dc.title | Relevant categories and partial functions | en |
dc.type | Article | en |
dc.identifier.doi | 10.2298/PIM0796017D | en |
dc.identifier.scopus | 2-s2.0-51649122254 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 17 | en |
dc.relation.lastpage | 23 | en |
dc.relation.issue | 96 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0003-2049-9892 | - |
SCOPUSTM
Citations
2
checked on Apr 1, 2025
Page view(s)
22
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.