DC FieldValueLanguage
dc.contributor.authorDošen, Kostaen
dc.contributor.authorPetrić, Zoranen
dc.date.accessioned2020-04-12T18:10:33Z-
dc.date.available2020-04-12T18:10:33Z-
dc.date.issued2007-12-01en
dc.identifier.issn0350-1302en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/339-
dc.description.abstractA relevant category is a symmetric monoidal closed category with a diagonal natural transformation that satisfies some coherence conditions. Every cartesian closed category is a relevant category in this sense. The denomination relevant comes from the connection with relevant logic. It is shown that the category of sets with partial functions, which is isomorphic to the category of pointed sets, is a category that is relevant, but not cartesian closed.en
dc.publisherMathematical Institute of SASA-
dc.relation.ispartofPublications de l'Institut Mathematiqueen
dc.subjectDiagonal natural transformation | Intuitionistic relevant logic | Partial functions | Pointed sets | Symmetric monoidal closed categoriesen
dc.titleRelevant categories and partial functionsen
dc.typeArticleen
dc.identifier.doi10.2298/PIM0796017Den
dc.identifier.scopus2-s2.0-51649122254en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage17en
dc.relation.lastpage23en
dc.relation.issue96en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-2049-9892-
Show simple item record

SCOPUSTM   
Citations

2
checked on Apr 1, 2025

Page view(s)

22
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.