DC FieldValueLanguage
dc.contributor.authorDošen, Kostaen
dc.contributor.authorPetrić, Zoranen
dc.date.accessioned2020-04-12T18:10:33Z-
dc.date.available2020-04-12T18:10:33Z-
dc.date.issued2010-08-01en
dc.identifier.issn0960-1295en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/336-
dc.description.abstractThe goal of this paper is to prove coherence results with respect to relational graphs for monoidal endofunctors, that is, endofunctors of a monoidal category that preserve the monoidal structure up to a natural transformation that need not be an isomorphism. These results are proved first in the absence of symmetry in the monoidal structure, and then with this symmetry. In the later parts of the paper, the coherence results are extended to monoidal endofunctors in monoidal categories that have diagonal or codiagonal natural transformations, or where the monoidal structure is given by finite products or coproducts. Monoidal endofunctors are interesting because they stand behind monoidal monads and comonads, for which coherence will be proved in a sequel to this paper.en
dc.publisherCambridge University Press-
dc.relationMinistry of Science of Serbia (Grants 144013 and 144029)-
dc.relation.ispartofMathematical Structures in Computer Scienceen
dc.titleCoherence for monoidal endofunctorsen
dc.typeArticleen
dc.identifier.doi10.1017/S0960129510000022en
dc.identifier.scopus2-s2.0-77957260966en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage523en
dc.relation.lastpage543en
dc.relation.issue4en
dc.relation.volume20en
dc.description.rankM23-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0003-2049-9892-
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 18, 2024

Page view(s)

25
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.