DC Field | Value | Language |
---|---|---|
dc.contributor.author | Došen, Kosta | en |
dc.contributor.author | Petrić, Zoran | en |
dc.date.accessioned | 2020-04-12T18:10:33Z | - |
dc.date.available | 2020-04-12T18:10:33Z | - |
dc.date.issued | 2010-08-01 | en |
dc.identifier.issn | 0960-1295 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/336 | - |
dc.description.abstract | The goal of this paper is to prove coherence results with respect to relational graphs for monoidal endofunctors, that is, endofunctors of a monoidal category that preserve the monoidal structure up to a natural transformation that need not be an isomorphism. These results are proved first in the absence of symmetry in the monoidal structure, and then with this symmetry. In the later parts of the paper, the coherence results are extended to monoidal endofunctors in monoidal categories that have diagonal or codiagonal natural transformations, or where the monoidal structure is given by finite products or coproducts. Monoidal endofunctors are interesting because they stand behind monoidal monads and comonads, for which coherence will be proved in a sequel to this paper. | en |
dc.publisher | Cambridge University Press | - |
dc.relation | Ministry of Science of Serbia (Grants 144013 and 144029) | - |
dc.relation.ispartof | Mathematical Structures in Computer Science | en |
dc.title | Coherence for monoidal endofunctors | en |
dc.type | Article | en |
dc.identifier.doi | 10.1017/S0960129510000022 | en |
dc.identifier.scopus | 2-s2.0-77957260966 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 523 | en |
dc.relation.lastpage | 543 | en |
dc.relation.issue | 4 | en |
dc.relation.volume | 20 | en |
dc.description.rank | M23 | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
crisitem.author.orcid | 0000-0003-2049-9892 | - |
SCOPUSTM
Citations
1
checked on Nov 18, 2024
Page view(s)
25
checked on Nov 19, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.