DC Field | Value | Language |
---|---|---|
dc.contributor.author | Došen, Kosta | en |
dc.contributor.author | Petrić, Zoran | en |
dc.date.accessioned | 2020-04-12T18:10:33Z | - |
dc.date.available | 2020-04-12T18:10:33Z | - |
dc.date.issued | 2010-08-01 | en |
dc.identifier.issn | 0960-1295 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/335 | - |
dc.description.abstract | The goal of this paper is to prove coherence results with respect to relational graphs for monoidal monads and comonads, that is, monads and comonads in a monoidal category such that the endofunctor of the monad or comonad is a monoidal functor (this means that it preserves the monoidal structure up to a natural transformation that need not be an isomorphism). These results are proved first in the absence of symmetry in the monoidal structure, and then with this symmetry. The monoidal structure is also allowed to be given with finite products or finite coproducts. Monoidal comonads with finite products axiomatise a plausible notion of equality of deductions in a fragment of the modal logic S4. | en |
dc.publisher | Cambridge University Press | - |
dc.relation | Ministry of Science of Serbia (Grants 144013 and 144029) | - |
dc.relation.ispartof | Mathematical Structures in Computer Science | en |
dc.title | Coherence for monoidal monads and comonads | en |
dc.type | Article | en |
dc.identifier.doi | 10.1017/S0960129510000034 | en |
dc.identifier.scopus | 2-s2.0-77957264389 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 545 | en |
dc.relation.lastpage | 561 | en |
dc.relation.issue | 4 | en |
dc.relation.volume | 20 | en |
dc.description.rank | M23 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0003-2049-9892 | - |
SCOPUSTM
Citations
1
checked on Nov 23, 2024
Page view(s)
24
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.