DC FieldValueLanguage
dc.contributor.authorKrapež, Aleksandaren
dc.contributor.authorPetrić, Zoranen
dc.date.accessioned2020-04-12T18:10:31Z-
dc.date.available2020-04-12T18:10:31Z-
dc.date.issued2017-01-01en
dc.identifier.issn1561-2848en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/321-
dc.description.abstractJ.D.H. Smith showed how to replace homotopies between quasigroups by homo-morphism between semisymmetric quasigroups. This is a semisymmetrization and it replaces a quasigroup by a semisymmetric structure defined on its Cartesian cube. The reason for a semisymmetrization is that homomorphisms behave more regularly than homotopies. A thorough survey of properties of Smith's semisymmetrization is given in this paper. Also, new semisymmetrizations, which replace a quasigroup by semisymmetric structures defined on its Cartesian square are suggested.en
dc.publisherInstitute of Mathematics, Academy of Sciences Moldova-
dc.relationAdvanced Techniques of Cryptology, Image Processing and Computational Topology for Information Security-
dc.relationRepresentations of logical structures and formal languages and their application in computing-
dc.relation.ispartofQuasigroups and Related Systemsen
dc.subjectAdjunction | Category | Embedding | Functor | Homotopy | Monadic adjunction | Quasigroup | Semisymmetrization | Varietyen
dc.titleA note on semisymmetryen
dc.typeArticleen
dc.identifier.scopus2-s2.0-85037825103en
dc.relation.firstpage269en
dc.relation.lastpage278en
dc.relation.issue2en
dc.relation.volume25en
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174008e.php-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174026e.php-
crisitem.project.fundingProgramDirectorate for Education & Human Resources-
crisitem.project.fundingProgramDirectorate for Social, Behavioral & Economic Sciences-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Education & Human Resources/1740089-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Social, Behavioral & Economic Sciences/1740267-
crisitem.author.orcid0000-0002-9533-1739-
crisitem.author.orcid0000-0003-2049-9892-
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 23, 2024

Page view(s)

19
checked on Nov 23, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.