DC FieldValueLanguage
dc.contributor.authorBaralić, Djordjeen
dc.contributor.authorPetrić, Zoranen
dc.contributor.authorTelebaković, Sonjaen
dc.date.accessioned2020-04-12T18:10:31Z-
dc.date.available2020-04-12T18:10:31Z-
dc.date.issued2018-07-18en
dc.identifier.issn1201-561Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/319-
dc.description.abstractFollowing the pattern of the Frobenius structure usually assigned to the 1-dimensional sphere, we investigate the Frobenius structures of spheres in all other dimensions. Starting from dimension d = 1, all the spheres are commutative Frobenius objects in categories whose arrows are (d + 1)-dimensional cobordisms. With respect to the language of Frobenius objects, there is no distinction between these spheres–they are all free of additional equations formulated in this language. The corresponding structure makes out of the 0-dimensional sphere not a commutative but a symmetric Frobenius object. This sphere is mapped to a matrix Frobenius algebra by a 1-dimensional topological quantum field theory, which corresponds to the representation of a class of diagrammatic algebras given by Richard Brauer.en
dc.publisherMount Allison University-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.relationRepresentations of logical structures and formal languages and their application in computing-
dc.relationAnalysis and algebra with applications-
dc.relation.ispartofTheory and Applications of Categoriesen
dc.subjectBrauerian representation | Cobordism | Coherence | Commutative Frobenius object | Normal form | Oriented manifold | Symmetric monoidal category | Topological quantum field theoryen
dc.titleSpheres as frobenius objectsen
dc.typeArticleen
dc.identifier.scopus2-s2.0-85053728596en
dc.identifier.urlhttp://www.tac.mta.ca/tac/volumes/33/24/33-24.pdf-
dc.relation.firstpage691en
dc.relation.lastpage726en
dc.relation.volume33en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174026e.php-
crisitem.project.fundingProgramDirectorate for Social, Behavioral & Economic Sciences-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Social, Behavioral & Economic Sciences/1740267-
crisitem.author.orcid0000-0003-2836-7958-
crisitem.author.orcid0000-0003-2049-9892-
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 24, 2024

Page view(s)

20
checked on Nov 24, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.